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In the two-dimensional superfluidity, the proliferation of the vortices and the antivortices results in a class of
phase transition, the Berezinskii-Kosterlitz-Thouless �BKT� transition. This class of phase transition is also
anticipated in the two-dimensional magnetic systems. However, its existence in the real magnetic systems still
remains mysterious. Here we propose a phenomenological model to illustrate that the spin-freezing transition
recently uncovered in the nuclear magnetic-resonance experiment on the NiGa2S4 compound is of BKT type.
The spin-freezing state observed in the NiGa2S4 possesses the power-law decayed spin correlation.
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As the thermodynamic conditions in the environment
change, for example the pressure or the temperature, matter
transforms from one state to another. Steam levitates from
the top of the hot coffee; ice melts in the soft drink. The
phase transition is ubiquitous in our daily life. Investigating
the phase transition is always a central subject in physics.
Most of the phase transitions can be understood by the dis-
tinct physical properties between the phases. For example, in
the vapor-liquid transition, the unit volumes per mole of the
molecules are different from the vapor to the liquid. In the
ferromagnetic transition, the spins orientate randomly at the
high-temperature side but start to align along the same direc-
tion resulting in the net magnetization at the low-temperature
side. However, in the two-dimensional �2D� superfluid, the
Berezinskii-Kosterlitz-Thouless �BKT� transition that hap-
pens when vortices and the antivortices proliferate does not
separate the phases with distinct thermodynamic quantities.1

Instead, the superfluidity correlation changes from the
power-law behavior to the exponentially decayed one as we
cross the transition from the lower-temperature side. In the
two-dimensional magnetic systems, the BKT transition is
also anticipated in all easy-plane Heisenberg models. On the
other hand, the power-law decayed spin correlation may play
an important role in the high transition temperature
superconductor.2 Therefore, understanding the spin dynamics
in the critical phase has become tremendously important.

NiGa2S4 is originally synthesized intending to realize the
spin liquid proposed by Anderson a few decades ago.3 It is
the layered material that the spin-one Ni2+ ions form the
ideal two-dimensional triangular network. As an antiferro-
magnetic insulator, NiGa2S4 exhibits no long-ranged mag-
netic ordering down to 350 mK shown in the specific-heat
capacity, the magnetic susceptibility, and the neutron-
scattering experiments.4 At 1.5 K, the Edwards-Anderson or-
der parameter Q=1 /N�i�Si�2 that tells the spin moment is
measured at 0.61, where N is the total number of spins. This
vastly reduced spin moment indicates the presence of the
strong quantum fluctuation that is highly favorable by the
scenario of the spin liquid. However, in the recent experi-
ments of the Ga nuclear magnetic resonance �Ga NMR�,5 a
temperature Tf is found around 10 K below which the spin
dynamics slows down and the freezing behavior is observed.
As approaching Tf from above, both the nuclear-spin-lattice
relaxation rate 1 /T1 and the nuclear-spin-spin relaxation rate
1 /T2 diverge. Moreover, spins do not freeze immediately at

Tf but persist fluctuating down to 2 K as found in the nuclear
quadruple resonance measurement �NQR�. Below 2 K, the
Ga-NQR spectrum becomes very broad and featureless,
which implies the formation of the static inhomogeneous
internal magnetic field. First, intuitively, the static internal
magnetic field occurs when the spins freeze up completely.
In this case, the Edwards-Anderson order parameter should
be close to the quantum number of the spin angular momen-
tum. Second, all thermodynamic quantities change smoothly
at the transition temperature Tf, but 1 /T1 and 1 /T2 diverge in
the NMR signals. Therefore, the later NMR experiment ap-
parently looks inconsistent with the previous measurements.
In this Rapid Communication, we shall provide a consistent
picture to compromise all the experimental results. Most
importantly, we illustrate that the spin-freezing transition at
T=Tf is the long-sought BKT transition in the two-
dimensional magnetic systems.

The way to compromise with all the experiments is to
consider the state that contains both the freezing spins and
the fluctuating ones. Then, both of them can be observed
simultaneously in the experiments. Before explaining further,
let us begin by reviewing the spin configuration �depicted in
Fig. 1�a�� observed in the neutron-scattering experiment. The
correlation has the wave vector �1/6, 1/6, 0� with the wave-
length 2� /3a, where a names the lattice constant between
two Ni2+ ions. This wave vector simply means that along the
a1 direction, the periodicity is of six sites and so is it along
the a2 direction; and that along b= �1,1 ,0�, the periodicity is
of three sites. For convenience, we highlight the triangles in
Fig. 1�a� as the reference. With respect to the reference tri-
angles, spins have the “one-in-two-out” �one spin points in
and two spins point out with respect to the triangles� or the
“two-in-one-out” configurations. Inspired by the observation
in the NMR experiment that the spin correlation starts to
develop below the Curie-Weiss temperature of 80 K, we as-
sume that the existence of an easy axis on every spin site and
its orientation is either parallel or antiparallel to the current
spin configuration. In order to manifest the antiferromagnetic
nature, we assign the local +z axis to be the “all in” or the
“all out” with respect to the reference triangles alternating
over the whole lattice. An example of the orientation of the
local axes is depicted as the black thin arrows in Fig. 1�a�. In
this transformed coordinate, spins are either +1 �parallel to
the +z direction� or −1 �antiparallel to the +z direction�.

Considering the quantum fluctuation explicitly, we pro-
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pose the following phenomenological Hamiltonian in the
transformed coordinate:

H = J�
�ij�

�i
z� j

z − K�
i

�i
x, �1�

where �z take the eigenvalues +1 and −1, J is the positive
phenomenological coupling constant, and K is the positive
measure. Since �x has the off-diagonal matrix elements that
connect the +1 and −1 states, K measures the spin-flipping
process between the +1 and −1 states. For small K, the
ground state of Eq. �1� on the triangular lattice is given in
Fig. 1�b�. Using our coordinate transformation, we can map
the spin configuration in Fig. 1�a� to the ground state of Eq.
�1�. If the spin is parallel to the local +z axis, we assign +1;
if it is antiparallel, we assign −1. In this way, there are spins
that are surrounded by the equal numbers of +1 and −1. If
those spins flip, the energy from the first term in Eq. �1� does
not change, but this process is encouraged by the second
term. Earlier numerical calculation confirms that eventually
the “zero state” is favored, which occupied +1 and −1 with
an equal probability.6,7 Then, this state with the thermal fluc-
tuation naturally resolves the inconsistency between the ex-
periments. The Edwards-Anderson order parameter of this
state is 0.6677 �Ref. 8�. It contains both the freezing and
fluctuating sites. Below the freezing temperature Tf, the
freezing sites contribute to the static internal magnetic field
observed in the Ga-NMR experiment, and the fluctuating
sites remain fluctuating down to zero temperature to contrib-
ute to the reduced moment found in the neutron scattering.
We note that although the spin variable on the “+1” and “−1”
sites may change with the coordinate transformation, the one
on the “zero” site does not. The Edward-Anderson order pa-
rameter is invariant with respect to our coordinate transfor-
mation.

At the mean-field level, as discussed in Ref. 4, the state in
Fig. 1 can be stabilized by a ferromagnetic nearest-neighbor
exchange and an antiferromagnetic third-nearest-neighbor

exchange. Photoemission spectroscopy also supports the en-
hanced contribution from the third-nearest-neighbor sites.9

Moreover, in a high temperature, the superexchange in this
material is believed to be isotropic. These complexities con-
cerning the microscopic details are not included in this Rapid
Communication. We remark that our phenomenological
model is built on top of the existence of the abnormal spin
correlation below the Curie-Weiss temperature. The superex-
change in our model is antiferromagnetic in the transformed
coordinate. Most importantly, the existence of the critical
phase, as will be shown later, and the validity of the current
model to describe the critical behavior help avoid those com-
plexities. In other words, Eq. �1� might be the fix-point
Hamiltonian of the fundamental microscopic model.

Now, let us focus on the spin-freezing transition observed
at Tf. Since the polycrystalline sample was used in the
magnetic-susceptibility measurement, we apply the quantum
Monte Carlo technique to calculate the averaged susceptibil-
ity � defined by 1 /3��xx+�yy +�zz�, where �ij =dmi /dhj, mi is
the magnetization per site, and hj is the external magnetic
field. In the calculation, the 106 Monte Carlo steps with the
average over 64 ensembles is used. In addition, the cluster
algorithm is applied along the imaginary time direction. In
Fig. 2, the result of the inverse susceptibility �−1 with J
=66 K �in the temperature unit� and K=0.5J is presented. It
is compared qualitatively well with the experiment and
shows weak size dependence because of its average nature.
Both of them have the spoonlike shape that contains the dip,
but the position of the dips happen at different temperatures
from the theoretical result and the experimental one. We
mark the temperature of the dip Tc in the theoretical result
and Tf in the experimental one.

In the Ga-NMR experiments, the spin-freezing transition
is observed at the dip of the inverse susceptibility, and an
unusual spin correlation starts to develop at the Curie-Weiss
temperature of 80 K. To understand this, we compute the
spin-spin correlation along the a1 direction defined by

FIG. 1. �Color online� �a� The spin structure observed by the
neutron scattering in Ref. 4. There are two arrows on every site. The
colored one is the spin orientation, and the thin black one is the
local easy axis. �b� The ground state of the antiferromagnetic quan-
tum Ising model on the triangular lattice. “−” indicates the local
“−1” state and “+” is the local “+1” state. “Zero” is the linear
superposition of the “+1” and “−1” states.
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FIG. 2. �Color online� The system size is 10�10 with 100 spins
in the calculation. The theoretical result has the same structure as
the experiments. At the dip of �−1, marked as Tf, the spin-freezing
transition occurs as found in the Ga-NMR experiments.
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D�na1� =
1

N
�

i

��i
z�i+n

z � , �2�

in the Lx�M geometry with the periodic boundary condi-
tion. From here Lx is the length along the a1 direction and M
is the one along the �1, 1, 0� direction, and Lx�4M is taken.
In this case, the correlation length ��T ,M� scales with M. We
define

��T� = lim
M→�

��T,M� , �3�

and it is shown in Fig. 3. We find that the spin correlation
starts to develop at 1.4J and it diverges at Tc�0.3J.

At Tc, the BKT-type transition occurs. Above Tc, for ex-
ample T=0.4J, ��T ,M� saturates exponentially as shown in
Fig. 4. Below Tc, for example T=0.2J, ��T ,M� is linear to
M. This linearity has only two possibilities: �1� the correla-
tion length is so large that our system sizes are too small to
reach the saturation; �2� it is in the critical phase. Because of
the conformal invariance of the critical phase in the two di-
mensions, the spin correlation decays exponentially in the
torus geometry. In this case, ��T ,M� is linear to M. Further-
more, the scaling dimension ��T� can be obtained by

��T� =
1

2���T�
M , �4�

where � is defined by

��z�0��z�r�� �
1

r2� . �5�

The first possibility can be ruled out as the following. In Fig.
5, we plot the initial slope of ��T ,M� defined by
���T ,M� / 	�M	M=0. It shows a clear phase transition at T
=Tc. If the first possibility were true, the initial slope would
have been monotonic and would have grown exponentially

as temperature decreases. However, the slope has a disconti-
nuity at Tc, indicating a phase transition. Moreover, it is not
a second-order phase transition, because both the magnetic
susceptibility and the specific heat are smooth functions at
Tc. If it is a classical Ising transition, ��T� should be sym-
metric with respect to Tc as 	T−Tc	�1. Here, although the
initial slopes at T=0.2J and T=0.4J are the same within the
error bar, their asymptotic behaviors are entirely different as
shown in Fig. 4. Therefore, the phase below Tc should be
critical with the power-law spin correlation. Additionally, the
scaling dimension ��T� has the monotonic temperature de-
pendence, which is the typical behavior of the scaling dimen-
sion in the critical phase. Due to the restriction of the tech-
nique, we are not able to compute the free energy to find the
central charge in the critical phase. Classification by the con-
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FIG. 3. �Color online� The result of ��T�. The temperature is in
the unit of J, and the correlation length is in the unit of lattice
constant a. At the high-temperature side of Tc ��0.3J�, the spin
correlation is exponentially decayed, and the correlation length di-
verges at Tc. Below Tc, the phase has the power-law spin correla-
tion. The green line is the theoretical fit of the 2D XY universality
class.
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FIG. 4. �Color online� ��T ,M� at T=0.2J and 0.4J. The vertical
axis is ��T ,M�, and M is in the unit of the lattice constant a. At
T=0.4J, the correlation length saturates exponentially. At T=0.2J,
the linear scaling implies the critical phase as explained in the text.
The two lines are the functional fit to the data.
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FIG. 5. �Color online� The temperature is in the unit of J. The
vertical axis is the initial slope of ��T ,M� defined in the text. If
there is no phase transition, the initial slope should be exponentially
and monotonically increasing. However, there is a discontinuity at
T=0.3J, which indicates a phase transition.
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formal field theory may be an interesting direction for future
research.

The existence of the BKT transition in the quantum Ising
model on the triangular lattice was previously pointed out by
Moessner et al.7 Here we summarize their argument and fur-
ther construct the topological object in this model. The quan-
tum 2D model of Eq. �1� at finite temperature can be mapped
to a three-dimensional �3D� classical Ising model with the
ferromagnetic exchange along the imaginary time direction
with finite dimension. Using the Landau-Ginzburg-Wilson
analysis, the 3D model can be mapped to an XY model with
a sixth-order symmetric breaking term, which has the sixfold
clock symmetry. At zero temperature, there is a quantum
phase transition described by the 3D XY universality class at
finite K, because the clock term is dangerously irrelevant in
3D. However, at finite temperature and in the thermodynamic
limit, the 3D model crosses over to the 2D model and it
results in two transitions: one is BKT transition at higher
temperature and the other at lower temperature that corre-
sponds to the sixfold clock symmetry breaking, for example,
to the state in Fig. 1�b�. Therefore, the BKT transition in
NiGa2S4 actually belongs to the 2D XY universality class. In
Fig. 3, we fit the correlation result well with the 2D XY
model.10 These two transitions are both seen in the Ga-NMR
experiment.5 The spin-freezing transition at 10 K is the BKT
transition, and the transition at 2 K where spins completely
freeze up corresponds to the second transition.

It is not coincident that the phase transition occurs at the
dip of �−1. Once the power-law spin correlation survives in
the phase rather than a critical point, the response to the
external field could be weaker. Due to the slow spin dynam-
ics, the magnetic susceptibility begins to drop in the critical
phase.

In Fig. 6, we show the calculation of the specific-heat
capacity. It illustrates the double-peak structure and the rea-
son is similar to the one given in Ref. 11, although the valley
between the peaks is not as deep as the experimental one
shown in Ref. 4. The magnetic specific heat in Ref. 4 is
obtained by subtracting the specific heat of ZnIn2S4, which is
nonmagnetic and isostructural to NiGa2S4, from the one of
the NiGa2S4. We remark that there is 29.68% difference in
the total atomic mass between these two compounds. How
reliable their magnetic specific result is suspicious to us.
However, their low-temperature result may be correct. Here

we also find no evidence of the existence of the energy gap,
which is consistent with their experiment.

In summary, we have shown that the spin-freezing transi-
tion seen in the Ga-NMR experiment on the NiGa2S4 com-
pound is the BKT-type transition, which belongs to the 2D
XY universality class. The divergence of the spin correlation
leads to the divergence of 1 /T1 and 1 /T2. Below Tf, the
power-law spin correlation develops in the state in Fig. 1.
The truly long-ranged spin correlation happens at the zero
temperature and dubbed by the “order by disorder.”6,7

Through our analysis, NiGa2S4 should be removed from the
candidate list for the spin-liquid ground state. Finally, the
long-sought BKT transition in the quantum spin system is
unexpectedly found. The phase accompanying the phase
transition will refresh our understanding of the spin dynam-
ics in the critical phase.
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FIG. 6. �Color online� The temperature dependence of the
specific-heat capacity. The temperature is in Kelvin.
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